ENCODE Utils Documentation
Release 2.8.0

Nathaniel Watson

Jan 20, 2022

Contents

1 Examples 3
L1 Examples o o o e e e e e e e e e e e e e 3
1.2 Transferring filesto GCP 6
2 Scripts 11
2.1 BU_TEEISIEILDY « & v v o o e 11
2.2 eu_add_controlled_by e 13
2.3 eu_check_not_posted e e e e e 14
24 eu_create_gep_url_list oL 14
2.5 eu_generate_upload_creds.pyo e e e e e e e e e e 15
2.6 eu_get_aliases e e e e e e e e e e 15
277 eU_GeL _aCCeSSIONS i i e e e e e e e e e e e e e e e 16
2.8 eu_get_replicate_fastq_encffs 16
2.9 eu_get_replicate_numbers L. e e e e e e 17
2.10 eu_report_fastq_CONENt_EITOTS . . . « . v v v v v v v e e e e e e e e e e e e e e e e e e 17
201 U_S3_tO_ZCPPY - « v v e 18
3 Client API Modules 19
3.1 encode_utils.aws_StOTaZe v . i i e 19
3.2 encode_utils.connection e e e e e e e e e e 20
3.3 encode_utils L e e 33
34 encode_utils.profiles L e e 34
3.5 encode_utils.transfer_to_gcp.py oo e e e 35
3.6 encode_utils.utils e e e e 38
4 Unit Tests 43
4.1 encode_utils.tests.test_utils L. L L e e e e e 43
4.2 encode_utils.tests.teSt_CONNECHION v v v v v v v e e e e e e e e e e e e e e 43
5 Indices and tables 45
Python Module Index 47
Index 49

ENCODE Utils Documentation, Release 2.8.0

Installation and configuration instructions are provided on the project’s GitHub wiki.

Contents 1

https://github.com/StanfordBioinformatics/encode_utils/wiki/Installation
https://github.com/StanfordBioinformatics/encode_utils/wiki/Configuration
https://github.com/StanfordBioinformatics/encode_utils/wiki

ENCODE Utils Documentation, Release 2.8.0

2 Contents

CHAPTER 1

Examples

1.1 Examples

1.1.1 Imports

import encode_utils as eu
from encode_utils.connection import Connection

1.1.2 Connecting to the production and development Portals

You’ll need to instantiate the Connection class, passing in a value for the dcc_mode argument.

#prod portal:
conn = Connection ("prod")

#dev portal
conn = Connection ("dev")

You can provide a custom host name as well, such as a demo host, granted that you have access to it:

conn = Connection ("demo.encodedcc.org")

Dry Runs

The second argument, dry_ run, can be set to True, which allows you to test things out without worrying about any
ENCODE Portal modifications being made:

conn = Connection ("dev", True)

The logging will indicate that you are in dry-run mode. Once you are happy with the simulation, you can switch to
live-run mode - the default when dry_ run isn’t set:

ENCODE Utils Documentation, Release 2.8.0

’conn.set_live_run()

And you can even switch back to dry-run mode:

’conn.set_dry_run()

1.1.3 Log Files

Each time you create a new Connection object, either directly as show above, or indirectly through use of the
packaged scripts, a log directory by the name of EU_LOGS will be created in the calling directory. Three log files are
created:

1. A debug log file that contains all of STDOUT.

2. An error log file that contains only terse error messages. This is your first stop for checking to see if any errors
occurred. Anything that is written to this file is also written to STDOUT, hence the debug log as well.

3. A POST log file, which only logs new records that are successfully added to the ENCODE Portal. Everything
written to this file is also written to STDOUT, hence the debug log as well.

These log files are specific to the host that you connect to. Each host will have a different trio of logs, with the host
name included in the log file names.

1.1.4 GET Request

Retrieve the JSON serialization for the Experiment record with accession ENCSR161EAA:

conn.get ("ENCSR161EAA™)

1.1.5 Search

Search for ChIP-seq assays performed on primary cells from blood:

query = {
"assay_title": "ChIP-seq",
"biosample_type": "primary cell",
"organ_slims": "blood",
"type": "Experiment"

}

conn.search (query)

The query will be URL encoded for you. If you want to use the search functionality programmatically, you should
first test your search interactively on the Portal. The result will be an array of record results, where each result is given
in its JSON representation.

1.1.6 PATCH Request

Add a new alias to the GeneticModification record ENCGMO63ASY. Create a payload (dict) that indicates the record
to PATCH and the new alias. The record to PATCH must be indicated by using the non-schematic key Connec-
tion.ENCID_KEY, or self, ENCID_KEY from the perspective of a Connection instance, which will be removed from
the payload prior to submission:

4 Chapter 1. Examples

ENCODE Utils Documentation, Release 2.8.0

payload = {
conn.ENCID_KEY: "ENCGMO63ASY",
"aliases": ["new-alias"]

}

conn.patch (payload)

1.1.7 File Upload

Given the File record ENCFF852W VP, say that we need to upload the corresponding FASTQ file to AWS (i.e. maybe
the former attempt failed at the time of creating the File record). Here’s how to do it:

’conn.upload_file(file_id:"ENCFF852WVP") ‘

This will only work if the File record has the submitted_file_name property set, which is interpreted as the local path
to the file to submit. You can also explicitly set the path to the file to upload:

conn.upload_file(file_id="ENCFF852WVP", file_path="/path/to/myfile") ‘

1.1.8 POST Request

Let’s create a new File record on the Portal that represents a FASTQ file, and automatically upload the file to AWS
once that is done:

payload = {
"aliases": ["michael-snyder:SCGPM_SReqg-1103_HG7CL_L3_GGCTAC_R1l.fastg.gz"],
"dataset": "ENCSR161EAA",
"file_format": "fastqg",
"flowcell details": {
"barcode": "GGCTAC",
"flowcell": "HG7CL",
"lane": "3",
"machine": "COOOPER"
}I
"output": "reads",
"paired_end": "1",
"platform": "encode:HiSeq4000",
"read_length": 101,
"replicate": "michael-snyder:GM12878_eGFP-ZBTB11_CRISPR_ChIP_input_R1",
"submitted_file_name": "/path/to/SCGPM_SReq-1103_HG7CL_L3_GGCTAC_R1l.fastg.gz"
}

Notice that we didn’t specify the required award and lab properties (required by the ENCODE profiles). When not
specified, the defaults will be taken from the environment variables DCC_AWARD and DCC_LAB when present.
Otherwise, you will get an error when trying to submit. Before we can POST this though, we need to indicate the
profile of the record-to-be.

Specifying the profile key

We are almost ready to hand this payload over to the post() method, however, we need to first indicate the profile to
POST to. To do this, add a special key to your payload that is stored in the constant Connection.PROFILE_KEY. The
post() method depends on this key as the way of indicating which profile to create a new record under. There are a few
ways in which you can specify the profile, but the recommended way is to use the stripped-down profile ID. If you look

1.1. Examples 5

ENCODE Utils Documentation, Release 2.8.0

at the JSON schema for the File profile at https://www.encodeproject.org/profiles/file.json, you’ll find that the value of
it’s id property is “/profiles/file.json”. The stripped-down value that you should use is file. Another way to say it is to
use the barebones profile name that you put in the URL to get to it. See the documentation in the profile. Profile class
for further details on how this works.

Without futher ado, let’s now add the profile specification to the payload and POST it:

payload[Connection.PROFILE_KEY] = "file"
conn.post (payload)

The logging to STDOUT and your log files will indicate the progress of your request, including the upload of your
FASTQ file to AWS.

1.1.9 Removing properties from a record

This feature is implemented via the PUT HTTP method, which works by replacing the existing record on the Portal
with a new representation. You just need to specify a list of property names to be removed. A GET on the record is
first made with the query parameter f rame=edit, and the properties that you indicate for removal are popped out of
the returned JSON representation of the record. This updated JSON representation is then sent to the Portal via a PUT
operation.

For example, say you have a biosample record and you want to remove the pooled_from property. This property stores
a list of other biosample records. You can’t just empty out the list interactively in the Portal, or programmatically via
a PATCH operation since this property, when present, can’t be empty. This is where the PUT HTTP method comes in
handy. Let’s look at an example:

conn = Connection ("dev")
conn.remove_props (rec_id="ENCBS13372SU", props=["pooled_from"])

It’s as simple as that. It should be mentioned that the remove_props () method will do some validation of its own
to ensure that you aren’t trying to delete something that you really shouldn’t delete, such as properties that are:

1. required,
2. read-only, and
3. non-submittable.

as indicated in the profile (JSON schema) of the record of interest. The Portal would most likely reject or silently
ignore any attempt to remove such properties, nonetheless, to be a good citizen, this client performs these checks
regardless for good measure.

It should also be noted that some properties simply can’t be deleted. For example, any attempt to delete the aliases
property will only empty out its list.

1.2 Transferring files to GCP

Encapsulates working with the Google Storage Transfer Service (STS) to transfer files to GCP from either list of public
URLs, or from a list of AWS S3 URIs. The latter requires that the user has AWS keys with permissions granted to the
source S3 bucket and objects.

The Google Storage Transfer API documentation for Python is available here for more details. This package exports
a few ways for interfacing with this logic.

6 Chapter 1. Examples

https://www.encodeproject.org/profiles/file.json
https://developers.google.com/resources/api-libraries/documentation/storagetransfer/v1/python/latest/

ENCODE Utils Documentation, Release 2.8.0

1. A module named encode_utils.transfer_to_gcp that defines the Transfer class, which provides the
ability to transfer files from an S3 bucket (even non-ENCODE S3 buckets) to a GCP bucket. It does so by creat-
ing what the STS calls a transferJob. A transferJob can also be created by passing in a URL list, which is a public
file accessible through HTTP/S; GCS details at https://cloud.google.com/storage-transfer/docs/create-url-list.

2. The encode utils.connection.Connection class has a method named encode utils.
connection.Connection.gcp_transfer_ from aws () that uses the above module and is specific
towards working with ENCODE files. Note: this requires AWS keys. If you simply want to copy released
ENCODE files, you should When using this method, you don’t need to specify the S3 bucket or full path of an
S3 object to transfer. All you need to do is specify an ENCODE file identifier, such as an accession or alias, and
it will figure out the bucket and path to the file in the bucket for you.

3. The method encode_utils.connection.Connection.gcp_transfer_from_urllist (),
which doesn’t require AWS keys since it only works with released ENCODE files. This method just creates
the file that can be used directly as input to the Google Storage Transfer Service in the Google Console, or
programatically to the method encode_utils.transfer to_gcp.Transfer.from urllist ().

4. The script eu_s3_to_gcp.py can be used, which calls the aforementioned method gcp_transfer_from_aws
method, to transfer one or more ENCODE files to GCP. Requires AWS keys.

1.2.1 The Transfer class

Create a one-off transferdob that executes immediately

This example is not ENCODE specific.

import encode_utils.transfer to_gcp as gcp

transfer = gcp.Transfer (gcp_project="sigma-night-206802")

The encode _utils.transfer to gcp.Transfer.from s3 () method is used to create what the STS
calls a transferJob. A transferJob either runs once (a one-off job) or is scheduled to run repeatedly, depending on
how the job schedule is specified. However, the from_s3 method shown below only schedules one-off jobs at present:

transfer_job = transfer.from_s3(s3_bucket="pulsar-encode-assets", s3_paths=["reads.
—~fastg.gz"], gcp_bucket="nathankwl", description="test")

At this point you can log into the GCP Consle for a visual look at your transferdJob.
transfer_job_id = transfer_job["name"]
print (transfer_job_id) # Looks sth. like "transferJobs/10467364435665373026".

Get the status of the execution of a transferJob. An execution of a transferJob 1is_
—called

a transferOperation in the STS 1lingo:

status = gcp.get_transfer_status (transfer_job_id)

print (status) # i.e. "SUCCESS". Other possabilities: IN_PROGRESS, PAUSED, FAILED,
—~ABORTED.

Get details of the actual transferOperation.

The "details" variable below is a list of transferOperations. Since we created a_
—one—-off job,

there will only be a single transferOperation.

details = transfer.get_transfers_from_job (transfer_job_id) [0]

>>> print (json.dumps (d, indent=4))

{

"name": "transferOperations/transferdobs—10467364435665373026-1532468269728367

(continues on next page)

1.2. Transferring files to GCP 7

https://cloud.google.com/storage-transfer/docs/create-url-list

ENCODE Utils Documentation, Release 2.8.0

(continued from previous page)

"metadata": {
"@type": "type.googleapis.com/google.storagetransfer.vl.TransferOperation”,
"name": "transferOperations/transferJobs-10467364435665373026—
—1532468269728367",
"orojectId": "sigma-night-206802",
"transferSpec": {
"awsS3DataSource": {
"bucketName": "pulsar—encode—-assets"
}/
"gcsDataSink": |
"bucketName": "nathankwl"
}/
"objectConditions": |
"includePrefixes": [
"cat.png"

}/
"startTime": "2018-07-24T21:37:49.7455229462",
"endTime": "2018-07-24T21:38:10.4772737502",
"status": "SUCCESS",
"counters": |
"objectsFoundFromSource": "1",
"bytesFoundFromSource": "8037¢6",
"objectsCopiedToSink": "1",
"bytesCopiedToSink": "80376"
}/
"transferJobName": "transferJobs/10467364435665373026"
}r
"done": true,
"response": |
"@type": "type.googleapis.com/google.protobuf.Empty"

S oH R T R Y H O T R R H R o H R R H R R R R R R R R R HR

1.2.2 The gcp_transfer_from_aws() method of the en-
code_utils.connection.Connection class

Requires that the user has AWS key permissions on the ENCODE buckets and file objects.

import encode_utils.connection as euc

conn = euc.Connection ("prod")

In production mode, the S3 source bucket is set to encode-files. In any other mode,
—the

bucket is set to encoded-files-dev.

transfer_job = conn.gcp_transfer_from_aws (
file_ids=["ENCFF270SAL", "ENCFF861EEE"],
gcp_bucket="nathankwl",
gcp_project="sigma-night-206802",
description="test")

8 Chapter 1. Examples

ENCODE Utils Documentation, Release 2.8.0

1.2.3 Copying files using a URL list

No AWS keys required, but all files being copied must have a status of released.

import encode_utils.transfer to_gcp as gcp

import encode_utils.connection as euc

conn = euc.Connection ("prod")

Create URL list file

url_file = conn.gcp_transfer_urllist(
file_ids=["ENCFE385UTX"],
filename="files to_ transfer.txt")

Upload files_to_transfer.txt to your GCS bucket, or some other public place,,
—accessible via HTTP/S.

Suggested to use a txt extension for your file rathar than tsv so that it can be_
—opened in the

browser (i.e. in GCP to obtain the URL).

transfer = gcp.Transfer (gcp_project="sigma-night-206802")
transfer_job = transfer.from urllist(
urllist="https://files_to_transfer.txt",
gcp_bucket="nathankwl",
description="test")

1.2.4 Running the script

Requires that the user has AWS key permissions on the ENCODE buckets and file objects.

eu_s3_to_gcp.py ——dcc—mode prod \
——file—-ids ENCFF270SAL ENCFF861EEE \
-—gcpbucket nathankwl \
-—gcpproject sigma-night-206802 \
——description test

1.2. Transferring files to GCP 9

ENCODE Utils Documentation, Release 2.8.0

10 Chapter 1. Examples

CHAPTER 2

Scripts

2.1 eu_register.py

Given a tab-delimited or JSON input file containing one or more records belonging to one of the profiles listed on
the ENCODE Portal (such as https://www.encodeproject.org/profiles/biosample.json), either POSTS or PATCHES the
records. The default is to POST each record; to PATCH instead, see the ——pat ch option.

When POSTING file records, the md5sum of each file will be calculated for you if you haven’t already provided the
md5sum property. Then, after the POST operation completes, the actual file will be uploaded to AWS S3. In order for
this to work, you must set the submitted_file_name property to the full, local path to your file to upload. Alternatively,
you can set submitted_file_name to and existing S3 object, i.e. s3://mybucket/reads.fastq.

Note that there is a special ‘trick’ defined in the encode_utils.connection.Connection () class that can
be taken advantage of to simplify submission under certain profiles. It concerns the attachment property in any profile
that employs it, such as the document profile. The trick works as follows: instead of constructing the attachment
propery object value as defined in the schema, simply use a single-key object of the following format:

{"path": "/path/to/myfile"}

and the attachment object will be constructed for you.

usage: eu_register.py [-h] [-m DCC_MODE] [-d] [--no-aliases]
[-—no-upload-file] -p PROFILE_ID —-i INFILE [-w]
[-r REMOVE_PROPERTY] [--patch | —-—rm-patch]

11

https://www.encodeproject.org/profiles/biosample.json

ENCODE Utils Documentation, Release 2.8.0

2.1.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-d, --dry-run Set this option to enable the dry-run feature, such that no modifications
are performed on the ENCODE Portal. This is useful if you’d like to
inspect the logs or ensure the validity of your input file.

Default: False

--no-aliases Setting this option is NOT advised. Set this option for doing a POST
when your input file doesn’t contain an ‘aliases’ column, even though
this property is supported in the corresponding ENCODE profile.
When POSTING a record to a profile that includes the ‘aliases’ prop-
erty, this package requires the ‘aliases’ property be used for traceabil-
ity purposes and because without this property, it’ll be very easy to
create duplicate objects on the Portal. For example, you can easily
create the same biosample as many times as you want on the Portal
when not providing an alias.

Default: False
--no-upload-file Don’t upload files when POSTing file objects
Default: False

-p, --profile_id The ID of the profile to submit to, i.e. use ‘genetic_modification’
for https://www.encodeproject.org/profiles/genetic_modification.json.
The profile will be pulled down for type-checking in order to type-cast
any values in the input file to the proper type (i.e. some values need to
be submitted as integers, not strings).

-i, --infile The JSON input file or tab-delimited input file.

The tab-delimited file format: Must have a field-header line as the
first line. Any lines after the header line that start with a ‘# will be
skipped, as well as any empty lines. The field names must be exactly
equal to the corresponding property names in the corresponding pro-
file. Non-scematic fields are allowed as long as they begin with a ‘#’;
they will be skipped. If a property has an array data type (as indicated
in the profile’s documentation on the Portal), the array literals ‘[and
‘]’ are optional. Values within the array must be comma-delimited.
For example, if a property takes an array of strings, then you can use
either of these as the value:

1) strl,str2,str3
2) [strl,str2,str3]

On the other hand, if a property takes a JSON object as a value, then
the value you enter must be valid JSON. This is true anytime you
have to specify a JSON object. Thus, if you are submitting a ge-
netic_modification and you have two ‘introduced_tags’ to provide,
you can supply them in either of the following two ways:

1) {“name”: “eGFP”, “location”: “C-terminal”},{“name”:
“FLAG”,”C-terminal”}

2) [{“name”: “eGFP”, “location”: “C-terminal”},{‘“name”:
“FLAG”,’C-terminal”}]

12 Chapter 2. Scripts

https://www.encodeproject.org/profiles/genetic_modification.json

ENCODE Utils Documentation, Release 2.8.0

The JSON input file Can be a single JSON object, or an array of
JSON objects. Key names must match property names of an ENCODE
record type (profile).

The following applies to either input file formats When patching
objects, you must specify the ‘record_id’ field to indicate the iden-
tifier of the record. Note that this a special field that is not present
in the ENCODE schema, and doesn’t use the ‘#’ prefix to mark it as
non-schematic. Here you can specify any valid record identifier (i.e.
UUID, accession, alias).

Some profiles (most) require specification of the ‘award’ and ‘lab’ at-
tributes. These may be set as fields in the input file, or can be left
out, in which case the default values for these attributes will be pulled
from the environment variables DCC_AWARD and DCC_LAB, re-
spectively.

-w, --overwrite-array-values Only has meaning in combination with the —patch option.
When this is specified, it means that any keys with array values will
be overwritten on the ENCODE Portal with the corresponding value
to patch. The default action is to extend the array value with the patch
value and then to remove any duplicates.

Default: False

-I, --remove-property Only has meaning in combination with the —rm-patch option. Prop-
erties specified in this argument will be popped from the record
fetched from the ENCODE portal. Can specify as comma delimited
string.

--patch Presence of this option indicates to PATCH an existing DCC record
rather than register a new one.

Default: False

--rm-patch Presence of this option indicates to remove a property, as specified by
the -r argument, from an existing DCC record, and then PATCH it with
the payload specified in -i.

Default: False

2.2 eu_add_controlled_by

Sets the File.controlled_by property for all FASTQ File records on an Experiment.
An experiment can have multiple controls. This script will only work if:
1. The Experiment.possible_controls is already set, and

2. If more than one control, all controls have the same number of biologoical replicates, and

3. The number of biological replicates on the Experiment is the same as the number of biological replicates for any

given control.

Having varying number of technical replicates is fine.

These requiements are set in order to have some meaningful, automated way of assigning control FASTQ files to

experimental FASTQ files.

The algorithm works as follows:

2.2. eu_add_controlled_by

13

ENCODE Utils Documentation, Release 2.8.0

1. The biological replicate numbers on the experiment are stored in a /ist, and ordered from least to greatest.
2. The biological replicate numbers on each control are stored in a /ist, and ordered from least to greatest.

3. Biological Replicate Assignment: For each control, its biological replicate number list created in step 2 is
superimposed onto the /ist created in step 1. Assignment then takes place by positional matching. The matching
is positional instead of simply by biological replicate number itself, since the numbering is known in some cases
to not alwasy be sequential starting from 1.

4. Setting possible_controls: For each replicate in the Experiment, the forward reads FASTQ file linked to that
replicate is assigned to the forward reads control FASTQ files. The control FASTQs are determined from the
superimposition step above. For each control, all replicates that have the same biologican_replicate_number are
included. If the sequencing is paired-end, then the same type of assignment happens for the reverse reads files.

usage: eu_add_controlled_by.py [-h] [-m DCC_MODE] -e EXP_ID

2.2.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-e, --exp-id An identifier of an Experiment record whose FASTQ File objects need
to have their controlled_by property set.

2.3 eu_check_not_posted

Checks if the specified record identifiers are found on the Portal or not by doing a GET request on each one. If a 404
(not found) response is returned, then this identifier is written to the specified output file.

’usage: eu_check_not_posted.py [-h] [-m DCC_MODE] -i INFILE -o OUTFILE

2.3.1 Named Arguments
-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-i, --infile Input file containing record identifiers, one per line. Any line starting
with a ‘#” will be skipped.

-0, --outfile Output file containing a subset of the input file. Only record IDs that
weren’t found on the Portal will be written to this file, one per line.

2.4 eu_create_gcp_url_list

Creates a Google Storage Transfer Service URL list file, which can be used as input into the Google STS to transfer
released ENCODE S3 files to your GCP buckets.

usage: eu_create_gcp_url_list.py [-h] [-m DCC_MODE]
(-f FILE_IDS [FILE_IDS ...] | —-i INFILE) -o
OUTFILE

14 Chapter 2. Scripts

ENCODE Utils Documentation, Release 2.8.0

2.4.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-f, --file-ids An alternative to —infile, one or more ENCODE file identifiers. Don’t
mix ENCODE files from across buckets.

-i, --infile An alternative to —file-ids, the path to a file containing one or more file
identifiers, one per line. Empty lines and lines starting with a ‘#” are
skipped.

-0, --outfile The output URL list file name.

2.5 eu_generate_upload_creds.py

Generates upload credentials for one or more File records on the ENCODE Portal. The upload credentials store AWS
authorization tokens to allow a user to upload a file to a presigned S3 URL.

The Exception requests.exceptions. HTTPError will be raised if the response from the server a not a successful status
code for any File object when attempting to generate the upload credentials, and will utlimately halt the program with
an error message.

usage: eu_generate_upload_creds.py [-h] [-m DCC_MODE]
(-f FILE_IDS [FILE_IDS ...] | —-1i INFILE)

2.5.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.
-f, --file-ids One or more ENCODE File identifiers. They can be any valid EN-
CODE File object identifier, i.e. alias, uuid, accession, mdSsum.
Default: []
-i, --infile Input file containing File object identifiers, one per line.

2.6 eu_get aliases

Retrieves the aliases for the given set of DCC record identifiers.

’usage: eu_get_aliases.py [-h] [-m DCC_MODE] -i INFILE -o OUTFILE

2.6.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-i, --infile Input file containing ENCODE object identifiers (one per line), i.e.
UUID, accession, or @id. Empty lines and lines beginning with a ‘#’
will be ignored.

2.5. eu_generate_upload_creds.py 15

ENCODE Utils Documentation, Release 2.8.0

-0, --outfile The output file, which is the same as the input file except for the addi-
tion of the tab-delimited columns - one for each alias.

2.7 eu_get_accessions

Use this script when there are records on the ENCODE Portal for which you know their aliases, but want to retreive
their DCC accessions. This will only work if the record aliases you provided are registered with the records on the
ENCODE Portal. Note that if the particular DCC profile at hand doesn’t support the accession property, then the uuid
will be returned.

usage: eu_get_accessions.py [-h] [-m DCC_MODE] -i INFILE -o OUTFILE
[-1 SUBMITTER_LAB]

2.7.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-i, --infile Input file containing record aliases (one per line). Empty lines and
lines beginning with a ‘#” will be ignored.
-0, --outfile The output file, which is in the same as the input file except for the

addition of the tab-delimited columns - one for each alias.

-1, --submitter-lab The submitting lab alias prefix (i.e. michael-snyder) for these aliases.
No need to set this option if your input file’s aliases are already pre-
fixed with the submitting lab. Furthermore, for any aliases lacking
the prefix, the default will be taken from the DCC_LAB environment
variable if not set here.

2.8 eu_get _replicate_fastq_encffs

Given an ENCODE experiment identifier, Prints the FASTQ ENCFF identifiers for the specified replicate and technical
replicates, or all replicates. Also prints the replicate numbers. For each FASTQ identifer, the following is printed to
stdout:

$BioNum_$TechNum_$ReadNumt$encff
where variables are defined as:

$BioNum - the biological repliate number $TechNum - the technial replicate number $ReadNum - “1° for
a forwards reads FASTQ file, and ‘2’ for a reverse reads FASTQ file.

usage: eu_get_replicate_fastqg_encffs.py [-h] [-m DCC_MODE] -e EXP_ID
[-b BIO_REP_NUM] [-t TECH_REP_NUM]

2.8.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

16 Chapter 2. Scripts

ENCODE Utils Documentation, Release 2.8.0

-e, --exp-id

-b, --bio-rep-num

-t, --tech-rep-num

The experiment to which the replicates belong. Must be set if —all-reps
is absent.

Print FASTQ ENCEFFs for this specified biological replicate number.

Print FASTQ ENCFFs for the specified technical replicate number of
the specified biological replicate.

2.9 eu_get_replicate_numbers

Given an input file with replicate IDs, one per line, retrieves the attributes biological_replicate_number and techni-
cal_replicate_number. An output file is created in tab-delimited format with these two additional columns appended

to the original lines.

usage: eu_get_replicate_numbers.py [-h] [-m DCC_MODE] -i INFILE -o OUTFILE

2.9.1 Named Arguments

-m, --dcc-mode

-i, --infile

-0, --outfile

The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

Input file containing replicate identifiers (one per line), i.e. alias,
UUID, or @id. Empty lines and lines starting with ‘#" will be skipped.

The tab-delimited output file, which is the same as the input
file except for the addition of the additional columns ‘biologi-
cal_replicate_number’ and ‘technical_replicate_number’ (header-line
not present).

2.10 eu_report_fastq_content_errors

Finds FASTQ files with a content error and indicates the error.

Given an input file containing experiment identifiers, one per row, looks up all FASTQ files on the experiment to check
for content errors. If any FASTQ file object has a status property of “content_error”, then the content error message
will be extracted from the property content_error_detail. A new file will be output containing the error details.

usage: report_fastg _content_errors.py [-h] [-m DCC_MODE] -i INFILE -o OUTFILE

2.10.1 Named Arguments

-m, --dcc-mode

-i, --infile

-0, --outfile

The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

Input file containing experiment identifiers, one per row. Any line
starting with a ‘#” will be skipped.

Output file containing three tab-delimited columns for each FASTQ
file that is reported:

1. The accession of the Experiment record that the FASTQ file
record belongs to.

2.9. eu_get_replicate_numbers 17

ENCODE Utils Documentation, Release 2.8.0

2. The accession of the FASTQ file record.

3. The error message stored in the File objects content_error_detail
property.

2.11 eu_s3 to_gcp.py

Copies one or more ENCODE files from AWS S3 storage to GCP storage by using the Google Storage Transfer
Service. See encode_utils.transfer _to_gcp.Transfer for full documentation.

Note: Currently, only priviledged users with appropriate DCC API keys will be able to make use of this script be-
cause the Google STS requires that the source buckets be publicly discoverable. Sice the encode bucket policies
deny the action s3:GetBucketLocation on the public principal. Non-priviledged users may find the alternative script
eu_create_gcp_url_list.py to be a solution.

usage: eu_s3_to_gcp.py [-h] [-m DCC_MODE]
(-f FILE_IDS [FILE_IDS ...] | -i INFILE)
[-gb GCPBUCKET] -gp GCPPROJECT [-d DESCRIPTION]
[-c S3CREDS]

2.11.1 Named Arguments

-m, --dcc-mode The ENCODE Portal site (‘prod’ or ‘dev’, or an explicit host name,
i.e. ‘demo.encodedcc.org’) to connect to.

-f, --file-ids An alternative to —infile, one or more ENCODE file identifiers. Don’t
mix ENCODE files from across buckets.

-i, --infile An alternative to —file-ids, the path to a file containing one or more file
identifiers, one per line. Empty lines and lines starting with a ‘#" are
skipped.

-gb, --gcpbucket The name of the GCP bucket.

-gp, --gcpproject The GCP project that is associated with gcp_bucket.

-d, --description The description to show when querying transfers via the Google Stor-

age Transfer API, or via the GCP Console. May be left empty, in
which case the default description will be the value of the first S3 file
name to transfer.

-¢, --s3creds AWS credentials. Provide them in the form
AWS_ACCESS_KEY_ID:AWS_SECRET_ACCESS_KEY. Ideally,
they’ll be stored in the environment in variables by the same names.
However, for additional flexability you can specify them here as well.

18 Chapter 2. Scripts

CHAPTER 3

Client APl Modules

3.1 encode_utils.aws_storage

class encode_utils.aws_storage.S3Upload (bucket_name, acl="public-read’, key_path="")
Bases: object

Simplifies the process of uploading files to a bucket in a specific location with the specified acl.
Parameters
* bucket_name — str. The name of the bucket to upload files to, i.e. pulsar-encode-assets.

* acl - str. See possible values at https://boto3.amazonaws.com/v1/documentation/api/
latest/reference/services/s3.html#S3.Client.put_object.

* key_path — str. The directory path in the specified bucket to upload all files to.
upload (filename)
Returns The key/path of the newly created object.
Return type str

class encode_utils.aws_storage.S30bject (bucket_name=", key=", s3_uri="")
Bases: object

Represents an object in a S3 bucket. Internally used for calculating the mdSsum and file size when submitting
files to the ENCODE Portal.

You must set the appropriate AWS keys as documented in the wiki.

Parameters

* bucket_name — str. The name of the S3 bucket that contains your file of interest. For
example, “mybucket”.

* key — str. The object path in the bucket. For example, /path/to/reads.fastq.gz.

19

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.put_object
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.put_object
https://github.com/StanfordBioinformatics/encode_utils/wiki/Configuration#aws-keys

ENCODE Utils Documentation, Release 2.8.0

* s3_uri — Fully qualified path to the object in the bucket, i.e. s3://pulsar-lims-
assets/path/to/reads.fastq.gz. If this is set, then the buket_name and key parameters are
ignored since they will be set internally by parsing the value of s3_uri.

md5sum ()
Retrieves the ETag as the mdSsum. As explained here, an object’s ETag may or may not be equal to its
MDS5 digest. In most cases, however, it will be. If ETags on your objects aren’t equal, then this method
shouldn’t be used.

size ()
Fetches the size of the S3 object by reading its content_length attribute.

3.2 encode utils.connection

encode_utils.connection.LOG_DIR = 'EU_Logs'
The directory that contains the log files created by the Connection class.

class encode_utils.connection.Connection (dcc_mode=None, dry_run=False, submis-

sion=False, no_log_file=False)
Bases: object

Handles communication with the Portal regarding data submission and retrieval.

For data submission or modification, and working with non-released datasets, you must have the environment
variables DCC_API_KEY and DCC_SECRET _KEY set. Check with your DCC data wrangler if you haven’t
been assigned these keys.

There are three log files opened in append mode in the directory specified by connection.LOG_DIR that are
specific to whichever Portal you are connected to. When connected to Production, each log file name will include
the token ‘_prod_’. For Development, the token will be ‘_dev_’. The three log files are named accordingly in
reference to their purpose, and are classified as:

1. debug log file - All messages sent to STDOUT are also written to this log file. In addition, all messages
written to the error log file described below are logged here.

2. error log file - Only terse error messages are sent to this log file for quick scanning of any potential issues.
If you identify an error here that needs more explanation, then you should consult the debug log file.

3. posted log file - Tabulates what was successfully POSTED. There are three tab-delimited colummns or-
dered as submission timestamp, record alias, and record accession (or UUID if the accession property
doesn’t exist for the profile of the record at hand). Note that if a record has several aliases, then only the
first one in the list for the aliases property is used.

ENCID_KEY = '_enc_id'
Identifies the name of the key in the payload that stores a valid ENCODE-assigned identifier for a record,
such as alias, accession, uuid, mdSsum, ... depending on the object being submitted. This is not a valid

property of any ENCODE object schema, and is used in the patch () instance method to designate the
record to update.

PROFILE_KEY = '_profile'
Identifies the name of the key in the payload that stores the ID of the profile to submit to. Like
ENCID_KEY, this is a non-schematic key that is used only internally.

POST = 'post'
Constant

PATCH = 'patch'
Constant

20 Chapter 3. Client API Modules

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html

ENCODE Utils Documentation, Release 2.8.0

debug_logger = None
A reference to the debug logging instance that was created earlier in encode_utils.debug_logger.
This class adds a file handler, such that all messages sent to it are logged to this file in addition to STDOUT.

dcc_modes = None
An indication of which Portal instance to use. Set to ‘prod’ for the production Portal, and ‘dev’ for the
development Portal. Alternatively, you can set an explicit host, such as demo.encodedcc.org. Leaving the
default of None means to use the value of the DCC_MODE environment variable.

dry run = None
Set to True to prevent any server-side changes on the ENCODE Portal, i.e. PUT, POST, PATCH, DELETE
requests will not be sent to the Portal. After-POST and after-PATCH hooks (see the instance method
after submit_hooks ()) will not be run either in this case. You can turn off this dry-run feature by
calling the instance method set_I1ive run().

error_logger = None
A logging instance with a file handler for logging terse error messages. The log file resides locally within
the directory specified by the constant connection.LOG_DIR. Accepts messages >= logging.
ERROR.

post_logger = None
A logging instance with a file handler for logging successful POST operations. The log file resides
locally within the directory specified by the constant connection.LOG_DIR. Accepts messages >=
logging.INFO.

auth
Sets the API and secret keys to use when authenticating with the DCC servers. These are deter-
mined from the values of the DCC_API_KEY and DCC_SECRET_KEY environment variables via the
_get_api_keys_from_env () private instance method.

set_submission (status)
Sets the boolean value of the self . submission attribute.

Parameters status — bool.

check_dry run()
Checks if the dry-run feature is enabled, and if so, logs the fact. This is mainly meant to be called by other
methods that are designed to make modifications on the ENCODE Portal.

Returns The dry-run feature is enabled. False: The dry-run feature is turned off.
Return type True

set_dry_run/()
Enables the dry-run feature and logs the fact.

set_live_run()
Disables the dry-run feature and logs the fact.

log_error (msg)
Sends ‘msg’ to both self.error_logger and self.debug_logger.

add_alias_prefix (aliases, prefix=False)
Given a list of aliases, adds the lab prefix to each one that doesn’t yet have a prefix set. The lab prefix is
taken as the passed-in prefix, otherwise, it defaults to the DCC_LAB environment variable, and it must be
a value assigned by the DCC, i.e. “michael-snyder” for the Snyder Production Center. The DCC requires
that aliases be prefixed in this manner.

Parameters

e aliases — [ist of aliases.

3.2. encode _utils.connection 21

ENCODE Utils Documentation, Release 2.8.0

» prefix — str. The DCC assigned lab prefix to use. If not specified, then the default is the
value of the DCC_LAB environment variable.

Returns [/ist.

Raises Exception — A passed-in alias doesn’t have a prefix set, and the default prefix could not
be determined.

Examples:

add_alias_prefix(aliases=["my-alias"],prefix="michael-snyder")
Returns ["michael-snyder:my-alias"]

add_alias_prefix(aliases=["michael-snyder:my-alias"],prefix="michael-snyder")
Returns ["michael-snyder:my-alias"]

add_alias_prefix(aliases=["my_alias"], prefix="bad-value")

Ralises an Exception since this lab prefix isn't from a registered source,,
—record on

the Portal.

get_aliases (dcc_id, strip_alias_prefix=False)
Given an ENCODE identifier for an object, performs a GET request and extracts the aliases.

Parameters
* dcc_id - str. The ENCODE ID for a given object, i.e ENCSR999EHG.

* strip_alias_prefix — bool. True means to remove the alias prefix if all return
aliases.

Returns The aliases.
Return type [list

indexing ()
Indicates whether the Portal is updating its schematic indicies.

Returns True if the Portal is indexing, False otherwise.
Return type bool

make_search_url (search_args)
Creates a URL encoded URL given the search arguments.

Parameters search_args — list of two-item tuples of the form [(key, val), (key,
val), ...].

Returns The URL containing the URL encoded query.
Return type str

search (search_args=[], url=None, limit=None)
Searches the Portal using the provided query parameters, which will first be URL encoded. The user can
pass in the query parameters and values via the search_args argument, or pass in a URL directly that
contains a query string via the url argument, or provide values for both arguments in which case the query
parameters specified in search_args will be added to the query parameters given in the URL.

If self.submission == True, then the query will be searced with “datastore=database”, unless the
‘database’ query parameter is already set.

Parameters

22 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

* search_args — [list of two-item tuples of the form [(key, wval), (key, val)
, - ... To support a != style query, append “!” to the key name.

e url — str. A URL used to search for records interactively in the ENCODE Portal. The
query will be extracted from the URL.

e limit — int. The number of search results to send from the server. The default means to
return all results.

Returns The search results.
Return type [ist
Raises requests.exceptions. HTTPError — The status code is not ok and != 404.

get_profile_ from_payload (payload)
Useful to call when doing a POST (and self.post () does call this). Ensures that the profile key identi-
fiedby self.PROFILE_KEY exists in the passed-in payload and that the value is a recognized ENCODE
object profile (schema) identifier. Alternatively, the user can set the profile in the more convoluted @id

property.
Parameters payload — dict. The intended object data to POST.
Returns The ID of the profile if all validations pass, otherwise.
Return type str
Raises

* encode_utils.exceptions.ProfileNotSpecified — Both keys self.
PROFILE_KEY and @id are missing in the payload.

* encode_utils.profiles.UnknownProfile—The profile ID isn’t recognized by
the class encode_utils.profiles. Profile.

get_lookup_ids_from_payload (payload)
Given a payload to submit to the Portal, extracts the identifiers that can be used to lookup the record on the
Portal, i.e. to see if the record already exists. Identifiers are extracted from the following fields:

1. self.ENCID_KEY,
2. aliases,

3. mdSsum (in the case of a file object)

Parameters payload — dict. The data to submit.
Returns The possible lookup identifiers.
Return type [ist
get (rec_ids, database=Fualse, ignore404=True, frame=None)
GET a record from the Portal.

Looks up a record in the Portal and performs a GET request, returning the JSON serialization of the object.
You supply a list of identifiers for a specific record, and the Portal will be searched for each identifier in
turn until one is either found or the list is exhausted.

Parameters

* rec_ids — str or list. Must be a list if you want to supply more than one identifier. For a
few example identifiers, you can use a uuid, accession, ..., or even the value of a record’s
@id property.

3.2. encode _utils.connection 23

ENCODE Utils Documentation, Release 2.8.0

* database — bool. If True, then search the database directly instead of the Elasticsearch.
indices. Always True when in submission mode (self.submission is True).

» frame — str. A value for the frame query parameter, i.e. ‘object’, ‘edit’. See https:
/lwww.encodeproject.org/help/rest-api/ for details.

e ignore404 - bool. Only matters when none of the passed in record IDs were found on
the Portal. In this case, If set to True, then an empty dict will be returned. If set to False,
then an Exception will be raised.

Returns The JSON response. Will be empty if no record was found AND ignore404=True.
Return type dict
Raises

» Exception — If the server responds with a FORBIDDEN status.

* requests.exceptions. HTTPError — The status code is not ok, and the cause isn’t due to a
404 (not found) status code when ignore404=True.

set_attachment (document)
Sets the attachment property for any profile that supports it, such as document or anti-
body_characterization.

Checks if the provided file is an image in either of the JPEG or TIFF formats - if so, then checks the image
orientation in the EXIF data and rotates if if necessary. The original image will not be modified.

Parameters document — str. A local file path.
Returns The ‘attachment’ propery value.
Return type dict

after_ submit_file_cloud_upload (rec_id, profile_id)
An after-POST submit hook for uploading files to AWS.

Some objects, such as Files (file.json profile) need to have a corresponding file in the cloud. Where in the
cloud the actual file should be uploaded to is indicated in File object’s file.upload_credentials.upload_url
property. Once the File object is posted, this hook is used to perform the actual cloud upload of the
physical, local file represented by the File object.

Parameters
e rec_id - str. An identifier for the new File object on the Portal.
* profile_id - str. The ID of the profile that the record belongs to.

after_submit_hooks (rec_id, profile_id, method=", upload_file=True)
Calls after-POST and after-PATCH hooks. This method is called from both the post () and patch ()
instance methods. Returns the None object immediately if the dry-run feature is enabled.

Some hooks only run if you are doing a PATCH, others if you are only doing a POST. Then there are some
that run if you are doing either operation. Each hook that is called can potentially modify the payload.

Parameters
e rec_id - str. An identifier for the record on the Portal.
* profile_id - str. The profile identifier indicating the profile that the record belongs to.

* method — str. One of self.POST or self.PATCH, or the empty string to indicate
which registered hooks to look through.

* upload file - bool. If False, skip uploading files to the Portal. Defaults to True.

24 Chapter 3. Client API Modules

https://www.encodeproject.org/help/rest-api/
https://www.encodeproject.org/help/rest-api/

ENCODE Utils Documentation, Release 2.8.0

before_submit_alias (payload)
A pre-POST and pre-PATCH hook used to
1) Clean alias names by removing disallowed characters indicated by the DCC schema for the alias
property.

2) Add the lab alias prefix to any aliases that are missing it. The DCC_LAB environment variable is
consulted to fetch the lab name, and if not set then this will be a no-op.

Parameters payload — dict. The payload to submit to the Portal.
Returns The potentially modified payload.
Return type dict

before_submit_attachment (payload)
A pre-POST and pre-PATCH hook used to simplify the creation of an attachment in profiles that support
it.

Checks the payload for the presence of the attachment property that is used by certain profiles, i.e. doc-
ument and antibody_characterization, and then checks to see if a particular shortcut is being employed
to indicate the attachment. That shortcut works as follows: if the dictionary value of the ‘attachment’
key has a key named ‘path’ in it (case-sensitive), then the value is taken to be the path to a local file.
Then, the actual attachment object is constructed, as defined in the document profile, by calling self.
set_attachment (). Note that this shortcut is particular to this Connection class, and when used
the ‘path’ key should be the only key in the attachment dictionary as any others will be ignored.

Parameters payload — dict. The payload to submit to the Portal.
Returns The potentially modified payload.
Return type dict

before_post_file (payload)
A pre-POST hook that calculates and sets the md5sum property and file_size property for a file record.
However, any of these two properties that is already set in the payload to a non-empty value will not be
reset.

Parameters payload — dict. The payload to submit to the Portal.
Returns The potentially modified payload.
Return type dict

Raises encode_utils.utils.MD5SumError — Perculated through the function en-
code_utils.utils.calculate_md5sum when it can’t calculate the md5sum.

before_post_fastq file (payload)
A pre-POST hook for FASTQ file objects that checks whether certain rules are followed as defined in the
file.json schema.

For example, if the FASTQ file is sequenced single-end, then the property File . run_type should be set
to single-ended as expected, however, the property File.paired_end shouldn’t be set in the payload,
asthe File.run_type property has the commment:

Only paired-ended files should have paired_end values

before_submit_hooks (payload, method=")
Calls pre-POST and pre-PATCH hooks. This method is called from both the post () and patch ()
instance methods.

3.2. encode _utils.connection 25

ENCODE Utils Documentation, Release 2.8.0

Some hooks only run if you are doing a PATCH, others if you are only doing a POST. Then there are some
that run if you are doing either operation. Each hook that is called can potentially modify the payload.

Parameters
* payload - dict. The payload to POST or PATCH.

* method — str. One of “post” or “patch”, or the empty string to indicate which registered
hooks to call. Some hooks are agnostic to the HTTP method, and these hooks are always
called. Setting method to the empty string means to only call these agnostic hooks.

Returns The potentially modified payload that has been passed through all applicable pre-submit
hooks.

Return type dict

post (payload, require_aliases=True, upload_file=True, return_original_status_code=False, trun-

cate_long_strings_in_payload_log=False)
POST a record to the Portal.

Requires that you include in the payload the non-schematic key self.PROFILE_KEY to designate the
name of the ENCODE object profile that you are submitting to, or the actual @id property itself.

If the lab property isn’t present in the payload, then the default will be set to the value of the DCC_LAB
environment variable. Similarly, if the award property isn’t present, then the default will be set to the value
of the DCC_AWARD environment variable.

Before the POST is attempted, any pre-POST hooks are fist called; see the method self.
before_submit_hooks). After a successfuly POST, any after-POST submit hooks are also run; see
the method self.after_submit_hooks.

Parameters
* payload — dict. The data to submit.

* require_aliases — bool. True means that the ‘aliases’ property is to be required
in payload. This is the default and it is highly recommended not to change this because
it’ll be easy to create duplicates on the server if accidentally POSTING the same payload
again. For example, you can easily create the same biosample as many times as you want
on the Portal when not providing an alias. Furthermore, submitting labs should include
at least one alias per record being submitted to the Portal for traceabilty purposes in the
submitting lab.

* upload_file — bool. If False, when POSTing files the file data will not be uploaded
to S3, defaults to True. This can be useful if you have custom upload logic. If the files to
upload are already on disk, it is recommmended to leave this with the default, which will
use aws s3 cp to upload them.

e return_original_status_code —bool. Defaults to False. If True, then will return
the original requests.Response.status_code of the initial post, in addition to the usual dict
response.

* truncate_long_strings_in_payload_log — bool. Defaults to False. If True,
then long strings (> 1000 characters) present in the payload will be truncated before being
logged.

Returns The JSON response from the POST operation, or the existing record if it already exists
on the Portal (where a GET on any of it’s aliases, when provided in the payload, finds the
existing record). If return_original_status_code=True, then will return a fuple of the above
dict and an int corresponding to the status code on POST of the initial payload.

Return type dict

26 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

Raises

* encode_utils.exceptions.AwardPropertyMissing — The award property
isn’t present in the payload and there isn’t a defualt set by the environment variable
DCC_AWARD.

* encode_utils.exceptions.LabPropertyMissing — The lab property isn’t
present in the payload and there isn’t a default set by the environment variable DCC_LAB.

* encode_utils.exceptions.MissingAlias —The argument ‘require_aliases’ is
set to True and the ‘aliases’ property is missing in the payload or is empty.

e requests.exceptions.HTTPError — The return status is not ok.

Side effects: self. PROFILE_KEY will be popped out of the payload if present, otherwise, the key “@id”
will be popped out. Furthermore, self. ENCID_KEY will be popped out if present in the payload.

patch (payload, raise_403=True, extend_array_values=True)
PATCH a record on the Portal.

Before the PATCH is attempted, any pre-PATCH hooks are fist called (see the method self.
before_submit_hooks ()). If the PATCH fails due to the resource not being found (404), then that
fact is logged to both the debug and error loggers.

Parameters

* payload — dict. containing the attribute key and value pairs to patch. Must contain the
key self.ENCID_KEY in order to indicate which record to PATCH.

e raise_403 - bool. True means to raise a requests.exceptions.HTTPError if
a 403 status (forbidden) is returned. If set to False and there still is a 403 return status,
then the object you were trying to PATCH will be fetched from the Portal in JSON format
as this function’s return value.

* extend _array values — bool. Only affects keys with array values. True (default)
means to extend the corresponding value on the Portal with what’s specified in the payload.
False means to replace the value on the Portal with what’s in the payload.

Returns

The JSON response from the PATCH operation, or an empty dict if the record doesn’t
exist on the Portal. Will also be an empty dict if the dry-run feature is enabled.

Return type dict
Raises

* KeyError —The payload doesn’t have the key se1f.ENCID_KEY set AND there aren’t
any aliases provided in the payload’s ‘aliases’ key.

* requests.exceptions.HTTPError —if the return status is not ok (excluding a 403
status if ‘raise_403’ is False.

remove_props (rec_id, props=[])
Runs a PUT request to remove properties of interest on the specified record.

Note that before-submit and after-submit hooks are not run here as they would be in self.patch() or
self.post() (before_submit_hooks () and after._submit_hooks () are not called).

Parameters
e rec_id - str. An identifier for the record on the Portal.

* props - list. The properties to remove from the record.

3.2.

encode_utils.connection 27

ENCODE Utils Documentation, Release 2.8.0

Raises:
Returns dict. Contains the JSON returned from the PUT request.

remove_and_patch (props, patch, raise_403=True, extend_array_values=True)
Runs a PUT request to remove properties and patch a record in one request.

In general, this is a method combining remove_props and patch. This is useful because some schema
dependencies requires property removal and property patch (including adding new properties) happening
at the same time. Please note that after the record is retrieved from the portal, props will be removed
before the patch is applied.

Parameters
* props - list. The properties to remove from the record.

* patch — dict. containing the attribute key and value pairs to patch. Must contain the key
self .ENCID_KEY in order to indicate which record to PATCH.

e raise_403 - bool. True means to raise a requests.exceptions.HTTPError if
a 403 status (forbidden) is returned. If set to False and there still is a 403 return status,
then the object you were trying to PATCH will be fetched from the Portal in JSON format
as this function’s return value.

* extend_array_ values — bool. Only affects keys with array values. True (default)
means to extend the corresponding value on the Portal with what’s specified in the payload.
False means to replace the value on the Portal with what’s in the payload.

Returns

The JSON response from the PUT operation, or an empty dict if the record doesn’t ex-
ist on the Portal. Will also be an empty dict if the dry-run feature is enabled.

Return type dict

Raises requests.exceptions.HTTPError — if the return status is not ok (excluding a
403 status if ‘raise_403’ is False).

send (payload, error_if_not_found=False, extend_array_values=True, raise_403=True)
Deprecated since version 1.1.1: Will be removed in the next major release.

A wrapper over self.post () and self.patch () that determines which to call based on whether the
record exists on the Portal. Especially useful when submitting a high-level object, such as an experiment
which contains many dependent objects, in which case you could have a mix where some need to be
POST’d and some PATCH’d.

Parameters
* payload - dict. The data to submit.

e error_if not_found - bool. If set to True, then a PATCH will be attempted and a
requests.exceptions.HTTPError will be raised if the record doesn’t exist on the
Portal.

* extend_array_values — bool. Only matters when doing a PATCH, and Only affects
keys with array values. True (default) means to extend the corresponding value on the
Portal with what’s specified in the payload. False means to replace the value on the Portal
with what’s in the payload.

* raise_403 - bool. Only matters when doing a PATCH. True means to raise an re-
quests.exceptions. HTTPError if a 403 status (forbidden) is returned. If set to False and
there still is a 403 return status, then the object you were trying to PATCH will be fetched

28 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

from the Portal in JSON format as this function’s return value (as handled by self.
patch()).

Raises requests.exceptions.HTTPError — You want to do a PATCH (indicated by
setting error_1if_not_found=True) but the record isn’t found.

get_fastgfiles_on_exp (exp_id)
Returns a list of all FASTQ file objects in the experiment.

Parameters exp_id — str. An Experiment identifier.
Returns Each element is the JSON form of a FASTQ file record.
Return type [list

get_fastqgfile_replicate_hash (exp_id)
Given a DCC experiment ID, gets its JSON representation from the Portal and looks in the original prop-
erty to find FASTQ file objects and creates a dict organized by replicate numbers. Keying through the dict
by replicate numbers, you can get to a particular file object’s JSON serialization.

Parameters exp_id - str. An Experiment identifier.

Returns dict where each key is a biological_replicate_number. The value of each key is another
dict where each key is a technical_replicate_number. The value of this is yet another dict
with keys being file read numbers - 1 for forward reads, 2 for reverse reads. The value for a
given key of this most inner dictionary is a list of JSON-serialized file objects.

Return type dict

extract_aws_upload_credentials (creds)
Sets values for the AWS CLI security credentials (for uploading a file to AWS S3) to the credentials found
in a file record’s upload_credentials property. The security credentials are stored in a dict where the keys
are named after environment variables to be used by the AWS CLI.

Parameters creds — dict: The value of a File object’s upload_credentials property.
Returns

dict containing keys named after AWS CLI environment variables being:

1. AWS_ACCESS_KEY_ID,

2. AWS_SECRET_ACCESS_KEY,

3. AWS_SECURITY_TOKEN,

4. UPLOAD_URL

Will be empty if the upload_credentials property isn’t present in file_json.
Return type dict

get_upload_credentials (file_id)
Similar to self.extract_aws_upload_credentials (), but it goes a step further in that it is
capable of regenerating the upload credentials if they aren’t currently present in the file record.

Parameters file_id - str. A file object identifier (i.e. accession, uuid, alias, mdSsum).
Returns

The value of the upload_credentials property if present, otherwise, the dict returned by
self.regenerate_aws_upload_creds, which tries to generate the value for this

property.
Return type dict

3.2. encode _utils.connection 29

ENCODE Utils Documentation, Release 2.8.0

regenerate_aws_upload_creds (file_id)
Reissues AWS S3 upload credentials for the specified file record.

Parameters file_ id - str. An identifier for a file record on the Portal.

Returns dict containing the value of the ‘upload_credentials’ key in the JSON serialization of
the file record represented by file_id. Will be empty if new upload credentials could not be
issued.

Return type dict

Raises requests.exceptions. HTTPError — The response from the server isn’t a successful status
code.

gcp_transfer_ urllist (file_ids, filename)
Creates a “URL list” file to be used by the Google Storage Transfer Service (STS); see documentation at
https://cloud.google.com/storage- transfer/docs/create-url-list. Once the URL list is created, you need to
upload it somewhere that Google STS can reach it via HTTP or HTTPS. I recommend uploading the URL
list to your GCS bucket. From there, you can get an HTTPS URL for it by clicking on your file name
(while in the GCP Console) and then copying the URL shown in your Web browser, which can in turn be
pasted directly in the Google STS.

Parameters

e file_ids - list of file identifiers. The corresponding S3 objects must have public read
permission as required for the URL list.

» filename — str. The output filename in TSV format, which can be fed into the Google
STS.

gcp_transfer from aws (file_ids, gcp_bucket, gcp_project, description=", aws_creds=())
Copies one or more ENCODE files from AWS S3 storage to GCP storage by using the Google STS. This
is similar to the gcp_transfer_urllist () method - the difference is that S3 object paths are copied
directly instead of using public HTTPS URIs, and AWS keys are required here.

See encode_utils.transfer to_gcp.Transfer () for full documentation.

Parameters

e file_ids — list. One or more ENCODE files to transfer. They can be any valid EN-
CODE File object identifier. Don’t mix ENCODE files from across buckets.

* gcp_bucket - str. The name of the GCP bucket.

* gcp_project — str. The GCP project that is associated with gcp_bucket. Can be given
in either integer form or the user-friendly name form (i.e. sigma-night-206802)

* description — str. The description to show when querying transfers via the Google
Storage Transfer API, or via the GCP Console. May be left empty, in which case the
default description will be the value of the first S3 file name to transfer.

* aws_creds — fuple. Ideally, your AWS credentials will be stored in the environ-
ment. For additional flexability though, you can specify them here as well in the form
(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY).

Returns The JSON response representing the newly created transferJob.
Return type dict

upload_file (file_id, file_path=None, set_md5sum=False)
Uploads a file to the Portal for the indicated file record. The file to upload can be specified by setting
the file_path parameter, or by using the value of the ENCODE file profile’s submitted_file_name property

30 Chapter 3. Client API Modules

https://cloud.google.com/storage-transfer/docs/create-url-list

ENCODE Utils Documentation, Release 2.8.0

of the given file object represented by the file_id parameter. The file to upload can be from any of the
following sources:

1. Path to a local file,
2. S3 object, or
3. Google Storage object
For the AWS option above, the user must set the proper AWS keys, see the wiki documentation.
If the dry-run feature is enabled, then this method will return prior to launching the upload command.
Parameters
e file_id - str. An identifier of a file record on the ENCODE Portal.

e file _path — str. The local path to the file to upload, or an S3 object (i.e
s3://mybucket/test.txt), or a Google Storage object (i.e. gs://mybucket/test.txt). If not
set, defaults to None in which case the local file path will be extracted from the record’s
submitted_file_name property.

* set_md5sum — bool. True means to also calculate the md5sum and set the file record’s
md5sum property on the Portal (this currently is only implemented for local files and S3;
not yet GCP). This will always take place whenever the property isn’t yet set. Furthermore,
setting to True will also cause the file_size property to be set. Normally these two proper-
ties would already be set as they are required in the file profile, however, if the wrong file
was originally uploaded, then they must be reset when uploading a new file.

Raises encode_utils.exceptions.FileUploadFailed — The return code of the
AWS upload command was non-zero.

get_platforms_on_experiment (rec_id)
Looks at all FASTQ files on the specified experiment, and tallies up the varying sequencing platforms that
generated them. The platform of a given file record is indicated by the platform property. This is moreless
used to verify that there aren’t a mix of multiple different platforms present as normally all reads should
come from the same platform.

Parameters rec_id - str. DCC identifier for an experiment.
Returns The de-duplicated list of platforms seen on the experiment’s FASTQ files.
Return type list

post_document (document, document_type, description)
POSTS a document to the Portal.

The alias for the document will be the lab prefix plus the file name. The lab prefix is taken as the value of
the DCC_LAB environment variable, i.e. ‘michael-snyder’.

Parameters

* document_type — str. For possible values, see https://www.encodeproject.org/profiles/
document.json. It appears that one should use “data QA” for analysis results documents.

* description — str. The description for the document.

* document — str. Local file path to the document to be submitted.
Returns The DCC UUID of the new document.
Return type str

download (rec_id, get_stream=Fualse, directory=None)
Downloads the contents of the specified file or document object from the ENCODE Portal to either the

3.2.

encode_utils.connection 31

https://github.com/StanfordBioinformatics/encode_utils/wiki/Configuration#aws-keys
https://www.encodeproject.org/profiles/document.json
https://www.encodeproject.org/profiles/document.json

ENCODE Utils Documentation, Release 2.8.0

calling directory or the indicated download directory. The downloaded file will be named as it is on the
Portal.

Alternativly, you can get a reference to the response object by setting the get_stream parameter to True.
Useful if you want to inspect the response, i.e. see if there was a redirect and where to, or download the

byte stream in a customized manner.
Parameters
e rec_id - str. A DCC identifier for a file or document record on the Portal.

e directory — str. The full path to the directory in which to download the file. If not
specified, then the file will be downloaded in the calling directory.

Returns str. The full path to the downloaded file if the get_stream parameter is False. re-
quests.models.Response: The get_stream parameter is True.

s3_object_path (rec_id, url=False)
Given an ENCODE File object’s id (such as accession, uuid, alias), returns the full S3 object URI, or

HTTP/HTTPS URI if url=True.
Parameters

* rec_id - str. A DCC object identifier of the record to link the document to.

e url — bool. True means to return the HTTP/HTTPS URI of the file rather than the S3
URI. Useful if this is a released file since you can download via the URL.

get_experiments_with_biosample (rec_id)
Returns all experiments that have a link to the given biosample record. Technically, there should only be
at most one experiment linked to a given biosample, but it’s possible that additional experiments can be,

incorrectly, with audit flags going off.

Parameters rec_id — str. An identifier for a biosample record on the Portal.

Returns

list of dicts, where is dict is the JSON serialization of an experiment record that is
linked to the provided biosample record. If no experiments are linked, then this will be an

empty list.

get_biosample_type (classification, term_id=None, term_name=None)
Searches the biosample_types for the given classification (i.e. tissue, cell line) and term_id or term_name.
Both term_name and term_id need not be set - if both are than term_id will take precedence. The combi-
nation of classification and term_id/term_name uniquely identifies a biosample_type.
Parameters

* classification — str. A value for the ‘classificaiton’ property of the biosam-
ple_ontology profile.

* term_id - str. A value for the ‘term_id’ property of the biosample_ontology profile.

* term_name — str. A value for the ‘term_name’ property of the biosample_ontology
profile.

Returns dict. Empty if not biosample_type found, otherwise the JSON representation of the
record.

Raises
¢ RecordNotFound — No search results.

* Exception — More than one search result was returned. This should not happen and if it
does then it’s likely a bug on the server side.

32 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

3.3 encode_utils

An API and scripts for submitting datasetss to the ENCODE Portal.

encode_utils.AWARD PROP NAME = 'award'
The award property name that is common to all ENCODE Portal object profiles.

encode_utils.ALIAS_PROP_NAME = 'aliases'
The aliases property name that is common to almost all ENCODE Portal object profiles. Notably, the following
profiles lack this property as of 2018-04-03: [‘access_key_admin’, ‘publication’, ‘award’, ‘organism’, ‘page’,
‘image’, ‘user’, ‘lab’]

encode_utils.LAB PROP_NAME = 'lab'
The lab property name that is common to all ENCODE Portal object profiles.

encode_utils.LAB = {}
dict. Stores the lab property to the value of the environment variable DCC_LAB to serve as the default lab when
submitting an object to the Portal. encode_utils.connection.Connection.post () will use this
default if this property doesn’t appear in the payload.

encode_utils.LAB_PREFIX = ''
str. Stores the prefix to add to each record alias when doing a POST operation. Most profiles have an ‘alias’ key,
which stores a list of alias names that are useful to the lab. When POSTING objects to the Portal, these aliases
must be prefixed with the lab name and end with a colon, and this configuration variable stores that prefix value.

encode_utils.AWARD = {}
dict. Stores the award property to the value of the environment variable DCC_AWARD to act as the default award
when submiting an object to the Portal. encode_utils.connection.Connection.post () will use
this default if this property doesn’t appear in the payload, and the profile at hand isn’t a member of the list
encode_utils.utils.Profile.AWARDLESS PROFILES.

encode_utils.PROFILES_URL = 'profiles'
The relative ENCODE Portal URL that points to all the profiles (schemas).

encode_utils.DCC_MODES = {'dev': {'url': 'https://test.encodedcc.org'}, 'prod': {'url':
A hash of known hosts one can connect to, where the key can be passed to the dcc_mode argument when
instantiating the connection. Connection class.

encode_utils.TIMEOUT = 60
The timeout in seconds when making HTTP requests via the request s module.

encode_utils.DEBUG_LOGGER_NAME = 'eu_debug'
The name of the debug 1ogging instance.

encode_utils.ERROR_LOGGER_NAME = 'eu_error'
The name of the error 10gging instance created in encode_utils.connection.Connection (), and
referenced elsewhere.

encode_utils.POST_LOGGER_NAME = 'eu_post'
The name of the POST logging instance created in encode_utils.connection.Connection (),
and referenced elsewhere.

encode_utils.debug logger = <Logger eu_debug (DEBUG)>
A logging instance that logs all messages sent to it to STDOUT.

encode_utils.error_logger = <Logger eu_error (ERROR)>
A logging instance that accepts messages at the ERROR level.

3.3. encode _utils 33

ENCODE Utils Documentation, Release 2.8.0

3.4 encode_utils.profiles

Contains a Profile class for working with profiles on the ENCODE Portal. Note that the terms ‘profile’ and
‘schema’ are used interchangeably in this package.

encode_utils.profiles.DEBUG_LOGGER = <Logger eu_debug.encode_utils.profiles (DEBUG) >
A debug 1ogging instance.

encode_utils.profiles.ERROR_LOGGER
An error 1ogging instance.

<Logger eu_error.encode_utils.profiles (ERROR) >

exception encode_utils.profiles.UnknownProfile
Bases: Exception

Raised when the profile ID in question doesn’t match any known profile ID.

class encode_utils.profiles.Profiles (dcc_url)
Bases: object

Encapsulates knowledge about the existing profiles on the Portal and contains useful methods for working with
a given profile.

A defining purpose of this class is to validate the profile ID specified in a POST payload passed to
encode_utils.connection.Connection.post (). This class is used to ensure that the profile spec-
ified there is a known profile on the Portal.

Parameters
* dcc_url - str. The portal URL being submitted to.
* dcc_url - str. The dcc_url as specified by Connection.dcc_mode.url.

FILE PROFILE_ID = 'file'
Constant storing the file.json profile’s ID. This is asserted for inclusion in Profile.PROFILES.

SUBMITTED_ FILE_PROP_NAME = 'submitted file_ name'
Constant storing a property name of the file.json profile. The stored name is asserted for inclusion in the
set of File properties.

MD5SUM_NAME_PROP_NAME = 'md5sum'
Constant storing a property name of the file.json profile. The stored name is asserted for inclusion in the
set of File properties.

FILE_SIZE_PROP_NAME = 'file_size'
Constant sotring a property name of the file.json profile.

profiles
Constant (dict) set to the return value of the function self.get_profiles (). See documentation
there for details.

profiles_with_property (property_name)
Returns a list of profile names that have a given property.

Parameters property name — str. The name of the property.
Returns list of profile names.

get_profile from_id (at_id)
Normalizes the profile_id so that it matches the format of the profile IDs stored in self.profiles, and
ensures that the normalized profile ID is a member of this list.

Parameters at_id - str. An @id from the portal, e.g. /biosamples/ENCBS123ABC/

Returns The normalized profile ID.

34 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

Return type str

Raises
* UnknownProfile— The normalized profile ID is not a member of the list
e self.profiles.

remove_duplicate_associations (associations)
Checks for duplicates in array properties containing string elements. Need to be careful as some cases can
be tricky, i.e.

[‘/documents/id1’, ‘id1’]
Such a duplicate should be identified and removed, leaving us with [“id1”’].
Parameters associations — [ist.

Returns Deduplicated list.

3.5 encode_utils.transfer_to_gcp.py

Contains a Transfer class that encapsulates working with the Google Storage Transfer Service to transfer files from
AWS S3 to GCP buckets. If you want to run this on a GCP VM, then in the command used to launch the VM you
should specify an appropriate security account and the cloud-platform scope as the following example demonstrates:

gcloud compute instances create myinstance --service-account="test-819@sigma-night-
—206802.1iam.gserviceaccount.com" --scopes=cloud-platform —--zone us-centrall-a

Google implements OAuth 2 scopes for requesting accessing to specific Google APIs, and in our case it’s the
cloud-platform scope that we need, which is associated with the Storage Transfer API, amongst others. See the
documentation in the Transfer class below for more details. Also, the Storage Transfer API documentation
is available at https://developers.google.com/resources/api-libraries/documentation/storagetransfer/v1/python/latest/
https://cloud.google.com/docs/authentication/production#auth-cloud-explicit-python

If running this in Google Cloud Composer, you must use specific versions of several Google libraries so that the tasks
running in the environment can properly use the credentials and scope that you delegated to the environment when
creating it. This is a work-around, as the Composer environment is buggy at present in this regard. You’ll need a
requirements.txt file with the following (thanks to danxmoran for pointing out):

google-api-core==1.5.0 google-api-python-client==1.7.4 google-auth==1.5.1 google-auth-
httplib2==0.0.3 google-cloud-core==0.28.1

Then use the following commands to create and set up your Cloud Composer environment:

¢¢¢ gcloud beta composer environments create test-cc-env3 —python-version=3 —location=us-centrall —zone=us-
centrall-a —disk-size=20GB —service-account=fasdf-29 @sigma-night-206802.iam.gserviceaccount.com

gcloud composer environments update env3 —location us-centrall —update-pypi-packages-from-file require-
ments.txt

(113

exception encode_utils.transfer_to_gcp.AwsCredentialsMissing
Bases: Exception

Raised when a method needs AWS credentials but can’t find them.

class encode_utils.transfer_to_gcp.Transfer (gcp_project, aws_creds=())
Bases: object

3.5. encode_utils.transfer_to_gcp.py 35

https://cloud.google.com/iam/docs/understanding-service-accounts#acting_as_a_service_account
https://developers.google.com/identity/protocols/googlescopes#storagetransferv1
https://developers.google.com/resources/api-libraries/documentation/storagetransfer/v1/python/latest/
https://cloud.google.com/docs/authentication/production#auth-cloud-explicit-python
mailto:--service-account=fasdf-29@sigma-night-206802.iam.gserviceaccount.com

ENCODE Utils Documentation, Release 2.8.0

See example at https://cloud.google.com/storage-transfer/docs/create-client and https://github.com/
GoogleCloudPlatform/python-docs-samples/blob/master/storage/transfer_service/aws_request.py.

Encapsulates the transfer of files from AWS S3 storage to GCP storage by using the Google Storage Transfer
Service (STS). The create () method is used to create a transfer job (termed transferJob in the STS API). A
transferJob either runs once (a one-off job) or is scheduled to run repeatedly, depending on how the job schedule
is specified.

Any transfer event of a trasferJob is termed as a transferOperation in the STS API. There are a few utility
methods in this class that work with transferOperations.

You’ll need to have a Google service account set up with at least the two roles below:
1) Project role with access level of Editor or greater.
2) Storage role with access level of Storage Object Creator or greater.

If running on a non-GCP VM, the service account credentials are fetched from the environment via the variable
GOOGLE_APPLICATION_CREDENTIALS. This should be set to the JSON file provided to you by the GCP
Console when you create a service account; see https://cloud.google.com/docs/authentication/getting-started for
more details.

If instead you are running this on a GCP VM, then you should specify the service account and OAuth 2 scope
when launching the VM as described at the beginning; there is no need use the service account file itself.

Notel: if this is the first time that you are using the Google STS on your GCP bucket, it won’t work just yet as
you’ll get an error that reads:

Failed to obtain the location of the destination Google Cloud Storage (GCS) bucket due to
insufficient permissions. Please verify that the necessary permissions have been granted.
(Google::Apis::ClientError)

To resolve this, I recommend that you go into the GCP Console and run a manual transfer there, as this adds
the missing permission that you need. I personaly don’t know how to add it otherwise, or even know what it is
that’s being added, but there you go!

Note2: If you try to transfer a file that is mistyped or doesn’t exist in the source bucket, then this will not set a
failed status on the transferJob. If you really need to know whether a file was tranferred in the API, you need to
query the transferOperation; see the method get_transfers from job ().

Parameters

* gcp_project — str. The GCP project that contains your GCP bucket(s). Can be given in
either integer form or the user-friendly name form (i.e. sigma-night-207122)

* aws_creds — tuple. Ideally, your AWS credentials will be stored in the environ-
ment. For additional flexability though, you can specify them here as well in the form
(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY).

from s3 (s3_bucket, s3_paths, gcp_bucket, overwrite_existing=False, description="")
Schedules an one-off transferJob that runs immediately to copy the specified file(s) from an s3_bucket to
a gcp_bucket. AWS keys are required and must have the following permissions granted in source bucket
policy:

1. s3:GetBucketLocation
2. s3:ListBucket
3. $3:GetObject

AWS Credentials are fetched from the environment via the variables AWS_ACCESS _KEY ID and
AWS_SECRET_ACCESS_KEY, unless passed explicitly to the aws_creds argument when instantiating the
Transfer class.

36

Chapter 3. Client API Modules

https://cloud.google.com/storage-transfer/docs/create-client
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/storage/transfer_service/aws_request.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/storage/transfer_service/aws_request.py
https://cloud.google.com/storage-transfer/docs/iam-transfer#sink-permissions
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/storage-transfer/docs/iam-transfer#source-permissions

ENCODE Utils Documentation, Release 2.8.0

Parameters
¢ s3_bucket — str. The name of the AWS S3 bucket.

* s3_paths — list. The paths to S3 objects in s3_bucket. Don’t include leading /> (it will
be removed if seen at the beginning anyways). Up to 1000 files can be transferred in a
given transfer job, per the Storage Transfer API transferJobs documentation. If you only
need to transfer a single file, it may be given as a string.

* gcp_bucket — str. The name of the GCP bucket.

* overwrite existing — bool. True means that files in GCP get overwritten by any
files being transferred with the same name (key).

* description — str. The description to show when querying transfers via the Google
Storage Transfer API, or via the GCP Console. May be left empty, in which case the
default description will be the value of the first S3 file name to transfer.

Returns The JSON response representing the newly created transferJob.
Return type dict

from urllist (urllist, gcp_bucket, overwrite_existing=False, description="")
Schedules an one-off transferJob that runs immediately to copy the files specified in the URL list to GCS.
AWS keys are not used, and all URIs must be publicliy assessible.

Parameters
* gcp_bucket — str. The name of the GCP bucket.

* overwrite_existing - bool. True means that files in GCP get overwritten by any
files being transferred with the same name (key).

* description — str. The description to show when querying transfers via the Google
Storage Transfer API, or via the GCP Console. May be left empty, in which case the
default description will be the value of the first S3 file name to transfer.

Returns The JSON response representing the newly created transferJob.
Return type dict

get_transfers_from_job (transferjob_name)
Fetches descriptions in JSON format of any realized transfers under the specified transferJob. These are
called transferOperations in the Google Storage Transfer API terminology.

See Google API example at https://cloud.google.com/storage-transfer/docs/
create-manage-transfer-program?hl=ja in the section called “Check transfer operation status”. See
API details at https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferOperations.

Parameters transferjob_name — str. The value of the name key in the dictionary that is
returned by self.from_s3 or self.from_urllist().

Returns

list of transferOperations belonging to the specified transferJob. This will be a list of
only a single element if the transferJob is a one-off transfer. But if this is a repeating
transferJob, then there could be several transferOperations in the list.

get_transfer_ status (transferjob_name)
Returns the transfer status of the first transferOperation that is returned for the given transferJob. Thus,
this function really only makes sense for one-off transferJobs that don’t repeat.

Note: if a transferJob attempts to transfer a non-existing file from the source bucket, this has no effect
on the transferOperation status (it will not cause a FAILED status). Moreover, transferOperation status

3.5.

encode_utils.transfer_to_gcp.py 37

https://developers.google.com/resources/api-libraries/documentation/storagetransfer/v1/python/latest/storagetransfer_v1.transferJobs.html
https://cloud.google.com/storage-transfer/docs/create-manage-transfer-program?hl=ja
https://cloud.google.com/storage-transfer/docs/create-manage-transfer-program?hl=ja
https://cloud.google.com/storage-transfer/docs/reference/rest/v1/transferOperations

ENCODE Utils Documentation, Release 2.8.0

doesn’t look at what files were and were not transferred and is ony concerned with the execution status of
the transferOperation job itself.

Parameters transferjob_name — str. The value of the name key in the dictionary that is
returned by create().

3.6 encode utils.utils

Contains utilities that don’t require authorization on the DCC servers.

encode_utils.utils.REQUEST_HEADERS_JSON = {'content-type': ‘'application/json'}
Stores the HTTP headers to indicate JSON content in a request.

encode_utils.utils.is_jpg_or_ tiff (filename)
Checks if the provided file is an image file that is formatted as either JPEG or TIFF.

Parameters f£ilename — str. Local file.

Returns The provided file is not a JPEG or TIFF image. str: ‘JPEG’ if this is a JPEG image, or
“TIFF if this is a TIFF image.

Return type False
Raises OSError — The provided file isn’t a recognized image format.

encode_utils.utils.orient_Jjpg (image)
Given a JPG or TIFF, attempts to read the EXIF data to determine the orientation and then transform the image
if needed. This function is called in connection. Connection.set_attachment().

EXIF - exchangeable image file format - is only supported by JPG and TIFF formatted images. Such images
aren’t even required to set EXIF metadata. Imaging software sometimes sets EXIF to allow clients to read
metadata such as what software took the picture, and what orientation it’s in. This function is concerned with
the oriention being in an upright position.

Note! Existing EXIF data will be lost for any transformed image. That’s not a big issue for orientation, however,
since software should consider the orientation to be 1 when EXIF isn’t present anyways.

Parameters image — str or bytes instance. Use a string to supply the path to local JPG or TIFF file.
Use a bytes object if you have the image data already in memory.

Returns
Dictionary with keys being:
1. from - int. The orientation that was read in, or O if unknown.

2. transformed - boolean. True if this function transformed the image, False otherwise. Note
that False could either mean that the image didn’t need any transformation or that the need
for a transformation could not be determined based on EXIF metadata or lack thereof.

3. stream - A bytes instance.
Return type dict

Raises InvalidExifOrientation — The EXIF orientation data is present, but the orientation value isn’t
in the expected range of [1..8].

encode_utils.utils.url_join (parts=[])
Useful for joining URL fragments to make a single cohesive URL, i.e. for searching. You can see several
examples of its use in the connection. Connection class.

38 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

encode_utils.utils.get_record_ id/ (rec)
Extracts the most suitable identifier from a JSON-serialized record on the ENCODE Portal. This is useful, for
example, for other applications that need to store identifiers of specific records on the Portal. The identifier
chosen is determined to be the ‘accession’ if that property is present, otherwise it’s the first alias of the ‘aliases’
property is present, otherwise its the value of the ‘uuid’ property.

Parameters rec — dict. The JSON-serialization of a record on the ENCODE Portal.
Returns The extracted record identifier.

Return type str

Raises Exception — An identifier could not be extracted from the input record.

encode_utils.utils.err_context (payload, schema)
Validates the schema instance against the provided JSON schema.

Parameters
e payload - dict.
¢ schema — dict.

Returns None if there aren’t any instance validation errors. Otherwise, a two-item tuple where the
first item is the main error message; the second is a dictionary-based error hash that contains the
contextual errors. This latter item may be empty.

encode_utils.utils.calculate_md5sum (file_path)
Calculates the md5sum for a local file or a S3 URL. If an S3 URI, the md5sum will be set as the objects ETag.

Parameters file_ path —str. The path to a local file or an S3 URI, i.e. s3://bucket-name/key.
Returns The mdSsum.

Return type str

Raises FileNotFoundError — The given file_path does not exist.

encode_utils.utils.calculate_file_size (file_path)
Calculates the file size in bytes for a local file or a S3 URL.

Parameters f£ile_path — str. The path to a local file or an S3 URI, i.e. s3://bucket-name/key.
Returns int.
Raises FileNotFoundError — The given file_path does not exist.

encode_utils.utils.print_format_dict (dico, indent=2, truncate_long_strings=False)
Formats a dictionary for printing purposes to ease visual inspection. Wraps the json.dumps () function.

Parameters

* indent — int. The number of spaces to indent each level of nesting. Passed directly to the
Jjson.dumps () function.

* truncate_long_strings — bool. Defaults to False. If True, then long strings will be
truncated before the object is serialized.

encode_utils.utils.truncate_long_strings_in_objects (0bj, max_num_chars=1000)
Recursively truncates long strings in JSON objects, useful for reducing size of log messsages containing pay-
loads with attachments using data URLs.

Parameters
* obj — Any type supported by json.dump, usually called with a dict.

* max_num_chars — int. The number of characters to truncate long strings to.

3.6. encode _utils.utils 39

ENCODE Utils Documentation, Release 2.8.0

encode_utils.utils.clean_aliases (aliases)
Removes unwanted characters from the alias name. This function replaces:

-both ¢/ and ©* with ‘_’. -# with “”, as it is not allowed according to the schema.

Can be called prior to registering a new alias if you know it may contain such unwanted characters. You would
then need to update your payload with the new alias to submit.

Parameters aliases — [ist. One or more record alias names to submit to the Portal.
Returns The cleaned alias.
Return type str

Example:: clean_alias_name(“michael-snyder:a/troublesomelias”) # Returns michael-
snyder:a_troublesome_alias

encode_utils.utils.create_subprocess (cmd, check_retcode=True)
Runs a command in a subprocess and checks for any errors.

Creates a subprocess via a call to subprocess.Popen with the argument shel1=True, and pipes stdout
and stderr.

Parameters
e cmd - str. The command to execute.

* check_retcode — bool. When True, then a subprocess.SubprocessError is
raised when the subprocess returns a non-zero return code. The error message will dis-
play the command that was executed along with its actual return code, as well as any mes-
sages that the subprocess sent to STDOUT and STDERR. When False, the subprocess.
Popen instance will be returned instead and it is expected that the caller will call its
communicate method.

Returns Two-item tuple containing the subprocess’s STDOUT and STDERR streams’ content if
check_retcode=True, otherwise a subprocess.Popen instance.

Raises subprocess.SubprocessError - There is a non-zero return code and
check_retcode=True.

encode_utils.utils.strip_alias_prefix (alias)
Splits alias on *:* to strip off any alias prefix. Aliases have a lab-specific prefix with ‘:” delimiting the lab name
and the rest of the alias; this delimiter shouldn’t appear elsewhere in the alias.

Parameters alias — str. The alias.
Returns The alias without the lab prefix.
Return type str

Example:

strip_alias_prefix("michael-snyder:B-167")
Returns "B-167"

encode_utils.utils.add to_set (entries, new)
Adds an entry to a list and makes a set for uniqueness before returning the list.

Parameters
e entries — [ist.

* new — (any datatype) The new member to add to the list.

40 Chapter 3. Client API Modules

ENCODE Utils Documentation, Release 2.8.0

Returns A deduplicated list.
Return type list

encode_utils.utils.does_lib_replicate_exist (replicates_json, lib_accession, biolog-
ical_replicate_number=False, techni-
cal_replicate_number=False)
Regarding the replicates on the specified experiment, determines whether any of them belong to the specified
library. Optional constraints are the ‘biological_replicate_number’ and the ‘technical_replicate_number’ props

of the replicates.

Parameters
* replicates_json —list. The value of the replicates property of an Experiment record.
* 1lib_accession — str. The value of a library object’s accession property.
* biological_replicate_number —int. The biological replicate number.
* technical_replicate_number - int. The technical replicate number.

Returns The replicate UUIDs that pass the search constraints.

Return type [ist

encode_utils.utils.remove_duplicate_objects (objects)
Checks for duplicates in array properties containing dictionary elements.

Parameters objects — list.

Returns Deduplicated list.

3.6. encode _utils.utils 41

ENCODE Utils Documentation, Release 2.8.0

42

Chapter 3. Client API Modules

CHAPTER 4

Unit Tests

4.1 encode_utils.tests.test utils

4.2 encode utils.tests.test connection

43

ENCODE Utils Documentation, Release 2.8.0

44

Chapter 4. Unit Tests

CHAPTER B

Indices and tables

* genindex
* modindex

e search

45

ENCODE Utils Documentation, Release 2.8.0

46

Chapter 5. Indices and tables

Python Module Index

e

encode_utils, 33
encode_utils.aws_storage, 19
encode_utils.connection, 20
encode_utils.profiles, 34
encode_utils.transfer_to_gcp, 35
encode_utils.utils, 38

47

ENCODE Utils Documentation, Release 2.8.0

48

Python Module Index

Index

A

add_alias_prefix/() (en-
code_utils.connection.Connection method),
21

add_to_set () (in module encode_utils.utils), 40

after_submit_file_cloud_upload/() (en-
code_utils.connection.Connection method),
24

after_submit_hooks () (en-
code_utils.connection.Connection method),

24
ALIAS_PROP_NAME (in module encode_utils), 33
auth (encode_utils.connection. Connection attribute), 21
AWARD (in module encode_utils), 33
AWARD_PROP_NAME (in module encode_utils), 33
AwsCredentialsMissing, 35

B

before_post_fastg_file () (en-
code_utils.connection.Connection method),
25

before_post_file() (en-
code_utils.connection.Connection method),
25

before_submit_alias () (en-
code_utils.connection.Connection method),
24

before_submit_attachment () (en-
code_utils.connection.Connection method),
25

before_submit_hooks () (en-
code_utils.connection.Connection method),
25

C

calculate_file_size() (in module en-
code_utils.utils), 39

calculate_md5sum() (in module en-

code_utils.utils), 39

check_dry_run ()
code_utils.connection.Connection
21

clean_aliases () (in module encode_utils.utils), 39

Connection (class in encode_utils.connection), 20

create_subprocess () (in module
code_utils.utils), 40

(en-
method),

en-

D

dcc_modes (encode_utils.connection.Connection at-
tribute), 21

DCC_MODES (in module encode_utils), 33

debug_logger (encode_utils.connection.Connection
attribute), 20

debug_logger (in module encode_utils), 33

DEBUG__LOGGER (in module encode_utils.profiles), 34

DEBUG_LOGGER_NAME (in module encode_utils), 33

does_lib_replicate_exist () (in module en-
code_utils.utils), 41

download () (encode_utils.connection. Connection
method), 31

dry_run (encode_utils.connection.Connection
tribute), 21

at-

E

ENCID_KEY (encode_utils.connection.Connection at-
tribute), 20

encode_utils (module), 33

encode_utils.aws_storage (module), 19

encode_utils.connection (module), 20

encode_utils.profiles (module), 34

encode_utils.transfer_to_gcp (module), 35

encode_utils.utils (module), 38

err_context () (in module encode_utils.utils), 39

error_logger (encode_utils.connection.Connection
attribute), 21

error_logger (in module encode_utils), 33

ERROR__LOGGER (in module encode_utils.profiles), 34

ERROR_LOGGER_NAME (in module encode_utils), 33

49

ENCODE Utils Documentation, Release 2.8.0

(en-
method),

extract_aws_upload_credentials()
code_utils.connection.Connection
29

F

FILE_PROFILE_ID (encode_utils.profiles.Profiles at-
tribute), 34

FILE_SIZE_PROP_NAME
code_utils.profiles. Profiles attribute), 34

(en-

from_s3() (encode_utils.transfer_to_gcp.Transfer
method), 36

from_urllist () (en-
code_utils.transfer_to_gcp.Transfer method),
37

G

gcp_transfer_ from_aws () (en-
code_utils.connection.Connection method),
30

gcp_transfer_urllist () (en-
code_utils.connection. Connection method),
30

get () (encode_utils.connection.Connection method),
23

get_aliases () (encode_utils.connection.Connection
method), 22

get_biosample_type () (en-
code_utils.connection.Connection method),
32

get_experiments_with_biosample () (en-
code_utils.connection.Connection method),
32

get_fastgfile_replicate_hash{() (en-
code_utils.connection.Connection method),
29

get_fastgfiles_on_exp () (en-
code_utils.connection. Connection method),
29

get_lookup_ids_from_payload/() (en-
code_utils.connection.Connection method),
23

get_platforms_on_experiment () (en-
code_utils.connection.Connection method),
31

get_profile_from_id() (en-
code_utils.profiles. Profiles method), 34

get_profile_from_payload() (en-
code_utils.connection. Connection method),

23
get_record_id () (in module encode_utils.utils), 38
get_transfer_status /() (en-
code_utils.transfer_to_gcp.Transfer method),
37

get_transfers_from_ job () (en-
code_utils.transfer_to_gcp.Transfer method),
37

get_upload_credentials () (en-
code_utils.connection. Connection method),
29

I

indexing () (encode_utils.connection. Connection
method), 22

is_jpg_or_tiff () (in module encode_utils.utils),
38

L

LAB (in module encode_utils), 33

LAB_PREFIX (in module encode_utils), 33

LAB_PROP_NAME (in module encode_utils), 33

LOG_DIR (in module encode_utils.connection), 20

log_error () (encode_utils.connection. Connection
method), 21

M

make_search_url () (en-
code_utils.connection.Connection method),
22

md5sum () (encode_utils.aws_storage.S30bject

method), 20
MD5SUM_NAME_PROP_NAME
code_utils.profiles. Profiles attribute), 34

(en-

O

orient_Jpg () (in module encode_utils.utils), 38

P

PATCH (encode_utils.connection.Connection attribute),
20

patch () (encode_utils.connection. Connection

method), 27

POST (encode_utils.connection. Connection attribute), 20

post () (encode_utils.connection.Connection method),

26

post_document () (en-
code_utils.connection.Connection method),
31

post_logger (encode_utils.connection. Connection at-
tribute), 21

POST_LOGGER_NAME (in module encode_utils), 33

print_format_dict () (in module
code_utils.utils), 39

PROFILE_KEY (encode_utils.connection. Connection at-
tribute), 20

Profiles (class in encode_utils.profiles), 34

profiles (encode_utils.profiles.Profiles attribute), 34

PROFILES_URL (in module encode_utils), 33

en-

50

Index

ENCODE Utils Documentation, Release 2.8.0

profiles_with_property () (en-
code_utils.profiles. Profiles method), 34

R

regenerate_aws_upload_creds () (en-
code_utils.connection.Connection method),
29

remove_and_patch () (en-
code_utils.connection.Connection method),
28

remove_duplicate_associations () (en-

code_utils.profiles. Profiles method), 35
remove_duplicate_objects () (in module en-
code_utils.utils), 41

remove_props () (en-
code_utils.connection.Connection method),
27

REQUEST_HEADERS_ JSON (in module en-
code_utils.utils), 38

S

s3_object_path() (en-
code_utils.connection.Connection method),

32
S30bject (class in encode_utils.aws_storage), 19
S3Upload (class in encode_utils.aws_storage), 19

search () (encode_utils.connection. Connection
method), 22

send () (encode_utils.connection.Connection method),
28

set_attachment () (en-
code_utils.connection.Connection method),
24

set_dry_run () (encode_utils.connection.Connection
method), 21

set_live_run () (en-
code_utils.connection.Connection method),
21

set_submission () (en-
code_utils.connection.Connection method),
21

size () (encode_utils.aws_storage.S30bject method),
20

strip_alias_prefix() (in module en-
code_utils.utils), 40

SUBMITTED_FILE_PROP_NAME (en-

code_utils.profiles. Profiles attribute), 34

T

TIMEOUT (in module encode_utils), 33

Transfer (class in encode_utils.transfer_to_gcp), 35

truncate_long_strings_in_objects () (in
module encode_utils.utils), 39

U

UnknownProfile, 34

upload() (encode_utils.aws_storage.S3Upload
method), 19

upload_file () (encode_utils.connection.Connection
method), 30

url_Jjoin () (in module encode_utils.utils), 38

Index

51

	Examples
	Examples
	Transferring files to GCP

	Scripts
	eu_register.py
	eu_add_controlled_by
	eu_check_not_posted
	eu_create_gcp_url_list
	eu_generate_upload_creds.py
	eu_get_aliases
	eu_get_accessions
	eu_get_replicate_fastq_encffs
	eu_get_replicate_numbers
	eu_report_fastq_content_errors
	eu_s3_to_gcp.py

	Client API Modules
	encode_utils.aws_storage
	encode_utils.connection
	encode_utils
	encode_utils.profiles
	encode_utils.transfer_to_gcp.py
	encode_utils.utils

	Unit Tests
	encode_utils.tests.test_utils
	encode_utils.tests.test_connection

	Indices and tables
	Python Module Index
	Index

